《仿生模式识别与信号处理的几何代数方法》作者:曹文明、冯浩著

仿生模式识别与信号处理的几何代数方法

  • 内容简介:

    本书从Clifford代数理论出发,提出了基于仿生模式识别的GA超香肠神经元,在SAR识别取得好的效果。利用可交换超复数代数和Clifford代数能够有效地分析了彩色图像和多光谱图像处理和识别中所遇到的问题,提出了基于CLIFFORD代数的仿生模式识别理论,实验论证了该方法具有合理性。

  • 目录:

    前言
    第1章几何学习
    1.1机器学习理论
    1.2几何学习理论
    1.2.1几何学习的研究意义
    1.2.2几何学习的分类
    1.3仿生(拓扑)模式识别
    1.3.1仿生模式识别的认知理论与数学理论
    1.3.2仿生模式识别的实现——多自由度神经元的几何形体覆盖
    1.4本章小结
    第2章Clifford几何代数基本理论
    2.1Clifford几何代数简介
    2.1.1几何代数的发展概述
    2.1.2多重矢量
    2.1.3外积
    2.1.4几何积
    2.2二维空间的几何代数
    2.2.1多重矢量的乘法
    2.2.2复数和G2空间
    2.2.3旋转
    2.3三维空间的几何代数
    2.3.1三维空间的几何代数G3
    2.3.2向量和二重矢量
    2.3.3二重矢量代数
    2.3.4三重矢量的性质
    2.3.5反转
    2.3.6旋转
    2.4片积和子空间的关系
    2.4.1片积子空间
    2.4.2射影、斥量和正交补
    2.4.3角度和距离
    2.4.4子空间的交和并
    2.5同构模型
    2.5.1成像几何:小孔照相机
    2.5.2G3中二维空间的同构模型
    2.5.3构造几何对象:线、点的并
    2.5.4偏移子空间之间的距离
    2.6本章小结
    第3章Clifford神经网络
    3.1引言
    3.2Clifford代数
    3.3C1ifforcl神经元
    3.3.1基于实数的神经元
    3.3.2基于Clifford代数的神经元
    3.3.3作为线性算子的Clifford神经元
    3.3.4Clifford群
    3.3.5旋转神经元
    3.4ClifforclMLPs
    3.4.1CliffordMLPs的结构
    3.4.2CliffordMLPs泛逼近理论
    3.4.3激活函数
    3.4.4实激活函数
    3.4.5CliffordMLPs的激活函数
    3.5Clifford反向传播算法
    3.6Clifforel支持向量机
    3.6.1用于分类的线性Clifford支持向量机
    3.6.2线性Clifford支持向量机的例证
    3.6.3分类问题中的非线性Clifford支持向量机
    3.7MLPs实验分析
    3.8Clifford支持向量机实验分析
    3.8.1螺旋:非线性问题
    3.8.2二维物体识别
    3.8.3三维行为识别
    3.9几何代数神经元SAR目标识别
    3.9.1几何实体度量
    3.9.2双权值几何代数神经元
    3.9.3实验
    3.10本章小结
    第4章基于Clifford代数的仿生模式识别理论及其应用
    4.1多光谱图像
    4.2Clifforal代数作为物理空间的模型
    4.2.1物理空间的代数学
    4.2.2物理空间的几何学
    4.3仿真实验与分析
    4.3.1人脸识别的训练与识别算法
    4.3.2实验与结果分析
    4.4本章小结
    第5章Young-Heimholtz模型及其在三维人脸识别中的应用
    5.1Young-Helmholtz模型
    5.1.1彩色图像的Young-Helmholtz模型
    5.1.2多色谱图像的Young-Helmholtzk-循环模型
    5.1.3多色图像的变换
    5.2仿真实验与分析
    5.2.1Young-Helmholtz模型的三维人脸识别的仿生模式识别算法
    5.2.2实验与结果分析
    5.3本章小结
    第6章基于n维多色图像的几何不变量的三维畸变图像的研究
    6.1Clifforcl几何不变量
    6.2二维和三维灰度图像的复杂四元数不变量
    6.3彩色二维和三维图像的力矩和不变量
    6.4三维畸变图像及其模式识别的研究
    6.4.1三维畸变图像
    6.4.2三维畸变图像的模式识别算法的研究
    6.4.3实验与结果分析
    6.5本章小结
    第7章n维Clifford傅里叶变换及其在采样定理中的研究
    7.1Rx空间上的C1ifford几何代数Gn
    7.2多重向量函数、向量差分和向量微分
    7.3n维C1ifford傅里叶变换
    7.3.1Gn中的Clifford傅里叶变换
    7.3.2n维Clifford傅里叶变换的性质
    7.3.3几种典型信号的多重傅里叶变换
    7.4n维Clifford傅里叶变换的卷积定理与性质
    7.4.1n维Clifford傅里叶变换的卷积定理
    7.4.2n维Clifford傅里叶变换的卷积性质
    7.4.3采样定理
    7.5彩色图像的n维Clifford傅里叶变换频谱分析实验
    7.6本章小结
    第8章基于Clifford代数的模糊高维图像恢复
    8.1传统图像恢复
    8.1.1退化的数学模型
    8.1.2常用的图像恢复方法
    8.2基于Cliffoda代数的图像恢复
    8.2.1图像几何表示
    8.2.2Clifford代数的图像恢复数学模型
    8.2.3Clifford代数的图像恢复原理
    8.2.4算法和实验分析
    8.3模糊图像增强在MATLAB中的实现
    8.3.1程序代码
    8.3.2实验结果
    8.4本章小结
    第9章基于Clifford流形的非线性降维
    9.1引言
    9.2流形上的Clifforel结构
    9.2.1Clifford微分代数
    9.2.2Clifford联络
    9.3基于Clifforal流形的多维数据降维算法
    9.4实验与结果分析
    9.5本章小结
    第10章基于Clifford代数的数字图像水印技术
    10.1引言
    10.2水印嵌入与提取
    10.3实验分析
    10.4彩色图像盲水印方法
    10.4.1水印圆锥曲面
    10.4.2水印嵌入
    10.4.3水印提取
    10.4.4实验结果
    10.5本章小结
    参考文献
    附录
    A.矩的唯一性定理
    B.特征函数和矩生成函数
    C.中心矩
    D.代数形式和不变量
    E.矩不变量理论
    F.相似矩不变量
    G.广义线性变换的矩不变量


数据来源网络,发布时间为(2022-11-12 16:19:26)

0

站点公告

如需电子书试读,请工单留言!
没有账号?注册  忘记密码?