《机器学习中的不平衡分类方法》康琦,吴启迪【pdf】

2018102317.jpg

《机器学习中的不平衡分类方法》是作者在机器学习领域不平衡数据分类问题的系统性研究成果。作者密切跟踪国内外机器学习领域的新研究动态,对当前受到关注的典型不平衡分类学习方法进行了系统阐述;考虑到不平衡分类问题在实际应用问题中的普遍性以及求解的复杂性,从框架建模、学习策略、算法实现等方面给出一系列高性能、鲁棒性强的不平衡分类方法,丰富机器学习理论与方法体系,以期为人工智能相关领域的研究提供新的思路和方法。
《机器学习中的不平衡分类方法》可供人工智能、自动化、计算机科学、电子信息等相关专业领域的研究生、教师、科研人员以及工程技术人员参考使用,也可供高等教育相关专业高年级本科生作为开拓视野、增长知识的阅读材料。

目录

前言
第1章 绪论
1.1 概述
1.2 分类问题概述
1.3 不平衡分类问题概述
1.4 研究背景
1.5 发展历程
1.6 应用现状
参考文献第2章 模型评估与选择
2.1 训练误差与测试误差
2.2 过拟合与欠拟合
2.3 模型选择
2.4 评估方法
2.5 假设检验
2.5.1 T-test检验
2.5.2 Wilcoxon秩和检验
2.5.3 方差分析(ANOVA)第3章 不平衡分类学习策略
3.1 重采样策略
3.1.1 经典过采样技术
3.1.2 经典欠采样方法
3.2 代价敏感学习
3.3 单类别学习
3.4 集成学习方法
3.5 新型采样策略
3.5.1 基于KNN降噪滤波的不平衡分类框架
3.5.2 KNN噪声滤波器
3.5.3 基于欠采样方法的KF噪声滤波器
3.5.4 算法复杂度分析
3.5.5 实验与结果分析
3.5.6 基于迭代分割滤波器的降噪不平衡分类算法
参考文献第4章 贝叶斯分类器
4.1 贝叶斯理论
4.1.1 条件概率和乘法公式
4.1.2 全概率公式和贝叶斯公式
4.1.3 极大后验假设与极大似然假设
4.1.4 事件的独立性
4.2 朴素贝叶斯分类器
4.2.1 朴素贝叶斯分类器描述
4.2.2 性能分析
4.2.3 NBC特征分析
4.3 代价敏感朴素贝叶斯分类器
4.3.1 二类不平衡分类
4.3.2 多类不平衡分类
4.4 参数选择
4.4.1 二类不平衡分类
4.4.2 多类不平衡分类
4.5 仿真实验与比较分析
4.5.1 二类不平衡分类
4.5.2 多类不平衡分类
4.6 本章小结
参考文献

第5章 决策树与随机森林
5.1 基本流程
5.1.1 决策树定义及结构
5.1.2 决策树学习步骤
5.2 划分选择
5.2.1 信息增益
5.2.2 增益率
5.2.3 基尼基数
5.3 剪枝处理
5.4 随机森林
5.5 随机森林集成
5.5.1 融合的基本原则
5.5.2 不平衡数据的模型集成方案
5.6 本章小结
参考文献

第6章 支持向量机
6.1 支持向量机原理
6.1.1 超平面与几何间隔最大化
6.1.2 拉格朗日对偶函数
6.1.3 核函数的引入
6.2 序列最小优化算法
6.3 不平衡分类SVM研究
6.4 基于距离的多子域加权欠采样SVM算法
6.4.1 基于几何间距的多子域加权欠采样算法
6.4.2 WU-SVM算法
6.4.3 小结
6.5 基于GA过采样的SVM算法
6.5.1 基于GA的过采样
6.5.2 递归支持向量机(R-SVM)
6.5.3 GR-SVM算法
6.6 WU-SVM仿真实验与结果分析
6.6.1 二类不平衡分类
6.6.2 多类不平衡分类
6.7 本章小结
参考文献

第7章 集成学习与强化学习
7.1 个体与集成
7.2 Boosting
7.3 Bagging
7.4 强化学习
7.4.1 强化学习的基本元素
7.4.2 策略选择
7.4.3 有模型学习
7.4.4 免模型学习
7.5 本章小结
参考文献

第8章 遗传规划分类
8.1 进化计算基本理论
8.2 遗传规划理论
8.2.1 遗传规划基本流程
8.2.2 遗传规划的特点
8.2.3 个体表示和适应度函数
8.2.4 种群的产生方法
8.2.5 遗传操作
8.2.6 终止准则与结果判定
8.3 遗传规划分类器
8.3.1 遗传规划分类模型
8.3.2 两类问题
8.3.3 多类问题
8.4 遗传规划分类器集成
8.4.1 利用遗传规划进行集成的基本原理
8.4.2 遗传规划集成学习的相关设置
8.4.3 算法描述
8.5 遗传规划不平衡分类器
8.5.1 多目标遗传规划
8.5.2 不平衡分类问题中的多目标问题
8.5.3 基于多目标的遗传规划用于不平衡分类
8.6 遗传规划用于不平衡分类实例
8.6.1 MOGP进化搜索算法
8.6.2 分类器集成选择
8.6.3 实验结果
8.6.4 分类器集成改进
8.7 本章小结
参考文献

第9章 非平稳环境学习
9.1 非平稳环境下的变化检测
9.1.1 检测变量与检验方法
9.1.2 非平稳环境检测的最新研究进展
9.2 增量式学习算法的研究
9.2.1 增量学习方式
9.2.2 最新动态
9.2.3 经典测试数据集及评估指标
9.3 本章小结
参考文献

第10章 迁移学习
10.1 迁移学习
10.2 迁移学习类型
10.2.1 同构迁移学习
10.2.2 异构迁移学习
10.3 迁移学习方法
10.3.1 实例权重法
10.3.2 特征表示法
lO.3.3 参数迁移法
10.3.4 知识关联法
10.4 迁移学习运用
10.5 本章小结
参考文献

第11章 典型应用案例
11.1 网络入侵检测
11.1.1 背景
11.1.2 网络入侵检测数据
11.1.3 GA过采样
11.1.4 SVM参数寻优
11.1.5 特征提取分析
11.1.6 实验结果及分析
11.2 医疗诊断
11.2.1 不平衡分类在医疗诊断中的应用
11.2.2 乳腺癌诊断
11.2.3 仿真结果与分析
11.3 短文本分类
11.3.1 短文本分类概述
11.3.2 文本表示相关的主要模型
11.3.3 特征降维
11.3.4 基于WU-SVM的短文本分类
11.3.5 小结

第12章 人工智能平台——AIThink
12.1 AIThink平台介绍
12.2 平台功能及用途
12.3 平台内容

资源下载此资源下载价格为800知识币,请先
友情提示:
资源下载费用,可免费签到所得到。
搜索不到需要的书籍,请留言(书名+作者)。 充值优惠:充值 100 元,实际到账 150 元。
资源下载
下载价格:800 知识币
VIP优惠:5 折
友情提示:
资源下载费用,可免费签到所得到。
搜索不到需要的书籍,请留言(书名+作者)。 充值优惠:充值 100 元,实际到账 150 元。
0

评论0

请先

充值优惠:充值 100 元,实际到账 150 元